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Abstract

Detailed numerical studies were carried out using a hybrid Eulerian±Lagrangian model for heavy
nickel particles dispersing in a turbulent gas ¯ow. A second-moment closure model, based on curvilinear
coordinates, was used for the prediction of the ¯uid ¯ow ®eld whereas an improved Lagrangian
stochastic model was employed for the prediction of the particulate phase. The improved Lagrangian
stochastic model has accounted for the turbulence inhomogeneity, turbulence anisotropy, and particle
crossing-trajectories e�ect. In addition, the particle inertial e�ect that heavy particles may disperse more
than ¯uid particles in the longtime limit was also taken into consideration based upon the recently
published theoretic analysis. Numerical results were compared with available experimental measurements
and with other numerical results for both the gas and particle phases. Various parametric studies, such
as particle initial conditions, eddy time scale, eddy length scale, particle inertia and restitution
coe�cients were performed to understand how these parameters in¯uenced numerical predictions. It was
found that the present numerical results were generally in better agreement with the experimental
measurements than those of the other modelers. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Two-phase ¯ows; Particle dispersion; Eddy-interaction model; Reynolds-stress model; Curvilinear coordi-
nates

1. Introduction

Particle-laden turbulent ¯ows are of great importance in many industrial applications, such
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as pneumatic transport of solids, pulverized coal combustion, classi®ers and cyclones. To
account for the e�ects of the particle-size spectrum, inter-particle collisions, particle-wall
interaction, and crossing particle trajectories, the Lagrangian trajectory model has been widely
used, in conjunction with the ¯uid-phase Eulerian formulation, to predict a variety of two-
phase ¯ows; see Shuen et al. (1985), Solomon et al. (1985) and Chen and Crowe (1984), among
others. Among the Lagrangian trajectory models for particle turbulent dispersion, the particle-
eddy interaction model of Gosman and Ioannides (1981), herein referred to as the GI model,
has been widely applied to predict various particle-laden two-phase ¯ows and spray ¯ows with
and without droplet evaporation; see Durst et al. (1984) and Chang and Wu (1994) and Chen
and Pereira (1996). The current status of modeling two-phase ¯ows has been reviewed by
Crowe (1982) and Crowe et al. (1996), Sirignano (1993), and Elghobashi (1994), among others.
The conventional particle-eddy model assumes that a discrete heavy particle moving in a

turbulent carrier ¯ow encounters a series of turbulent energetic eddies randomly sampled from
the carrier ¯ow ®eld. The particle is interacting with the eddy for a period of time, which is
determined as the minimum of the eddy lifetime and the eddy transit time accounting for the
crossing trajectory e�ect. Even though such an eddy interaction model has been widely applied
with a great success to predict many dilute turbulent two-phase ¯ows, the recent analyses
(Graham, 1996a, 1996b; Graham and James, 1996) have shown that there exist some intrinsic
model de®ciencies. It was found that the original GI model could not account for the
possibility that the ®nite-inertia particles may disperse faster than the ¯uid particles. This is
due to the fact that the constraint imposed by the original GI model has led to the outcome
that the ®nite-inertia particles can never interact with the eddy for a time longer than the ¯uid
particles, thus underpredicting the dispersion of the ®nite-inertia particle in the longtime limit.
Evidently, this is clearly in contrast to experimental observations that the ®nite-inertia particles
may disperse more than the ¯uid particles. To take this physical phenomenon into account,
Graham (1996a) proposed a modi®cation on the original GI model by introducing an
additional maximum particle-eddy interaction time scale, which is independent of the ¯uid
particle interaction time (FPIT) scale. Given a turbulence structure parameter, the maximum
time scale can be determined. Chen and Pereira (1998) found that such a modi®cation
improved their numerical predictions for the dispersion of glass beads with a mean diameter of
50 mm in a turbulent gas ¯ow.
The original GI model for particle dispersion is based upon the Eulerian ¯ow ®eld predicted

with the k±e model. The local turbulent kinetic energy is used for sampling the eddy velocity
¯uctuations. Therefore, it cannot account for the turbulence anisotropy when anisotropically
turbulent two-phase ¯ows are considered. To account for the e�ect of the turbulence
anisotropy on particle dispersion, Chen and Pereira (1995) found that the time-correlated
particle dispersion model (Zhou and Leschziner, 1991) should be used. However, the time-
correlated particle dispersion model increases the computational burden as compared to the
original GI model. Later, Chen and Pereira (1996) found that the e�ect of turbulence
anisotropy on particle dispersion could be accounted for by modifying the original GI model;
using the local Reynolds stresses, instead of the local turbulent kinetic energy, to determine the
eddy velocity ¯uctuations. It was shown that with this modi®cation the anisotropic particle
dispersion could be adequately predicted. In the original GI model, it is assumed that the eddy
velocity ¯uctuations, sampled at the beginning of encounter, are kept unchanged until the end
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of the particle-eddy interaction time. Evidently, this assumption results in an arti®cial transfer
of turbulence from the region of high intensity to low intensity within an eddy interaction time.
To overcome this drawback, MacInnes and Bracco (1992) suggested that the turbulence
inhomogeneity could be accounted for by using a normalized ¯uctuating velocity at the
beginning of encounter to de®ne a physical scale. The local turbulence intensity is then used to
determine the eddy ¯uctuating velocities at each time step.
The objective of the present work is to investigate the capability of an improved particle

dispersion model to predict the dispersion of heavy nickel particles in a turbulent gaseous ¯ow.
Experimental measurements (Sato et al., 1996) are used to evaluate numerical predictions. The
second-moment Reynolds-stress transport model is used for the carrier gas ¯ow. The solution
of the Reynolds-stress model is based on curvilinear coordinates, with an aim to generalize the
feasibility of the present two-phase ¯ow model to predict industrial two-phase ¯ows with
complex geometries, for example, the particle dispersion in an ultrasonic ¯ow meter (Chen and
Pereira, 1997). The improved particle-eddy interaction model can account for particle
dispersion in inhomogeneous, anisotropic turbulent ¯ows. Detailed numerical studies were
carried out to clarify the in¯uences of di�erent parameters, such as eddy length and time
scales, particle inertia, particle initial conditions and particle-wall interaction on two-phase ¯ow
predictions. In addition, the complete (momentum exchanges and turbulence modulation) and
partial (only momentum exchanges) two-way coupling e�ects were also studied to isolate the
contribution of the momentum exchanges from that of the turbulence modulation to the
coupling e�ects. To evaluate the present two-phase ¯ow model, numerical predictions were
compared with both numerical and experimental results of Sato et al. (1996). In addition, the
numerical results were also compared with those of Berlemont et al. (1997).

2. Reynolds-stress transport modeling of the continuous phase

For dilute two-phase ¯ows, the particulate-phase concentration is typically less than 0.1%.
As a result, the Eulerian governing equations for the continuous phase are similar to those for
single-phase ¯ows, except that the exchanges between the two phases are necessarily accounted
for using a particle-source-in-cell model. For isothermal two-phase ¯ows, two-phase exchanges
occur in momentum equations. In addition, the turbulent modulation should also be
considered in the equations of the turbulent kinetic energy and its dissipation rate. To cope
with the possible geometric complexity encountered in many two-phase ¯ows, the present
Reynolds-transport equations are written and solved using Cartesian velocity vectors in
curvilinear coordinates, the so-called partial transformation approach. In what follows, the
Eulerian governing equations are brie¯y described. The time-averaged transport equations for
continuity and momentum can be written tensorially in non-orthogonal curvilinear coordinates
as:
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where the coe�cient b's denote the cofactors of the co-ordinate transformations, J is the
Jacobian determinant, P is the pressure, and S

p
Ui

accounts for the two-phase momentum
exchange. The Reynolds stresses are governed by
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where Pij, fij and S
p
ij represent, respectively, the generation, pressure±strain processes, and two-

way coupling sources between the continuous and particulate phases. The turbulent kinetic
energy k is equal to 1
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The pressure±strain terms are modeled using the proposal of Gibson and Launder (1978):

fij � fij,1 � fij,2 � fw
ij,1 � fw

ij,2 �5�

where the ®rst and second terms on the right-hand side denote the `return-to-isotropy' and the
`rapid' contribution, respectively. The remaining two terms are the corresponding corrections
to account for the e�ects of wall-induced pressure re¯ections. Each term in Eq. (5) is given as
follows:
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where ni denotes the ith component of a unit vector normal to the wall, and f is the function
of the wall-oriented distance, Dxn, given by

f � k3=2=e
2:45Dxn

�9�

The dissipation rate of the turbulent kinetic energy, e, is governed by
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where the last term Sp
mm accounts for the turbulence modulation by the dispersed phase. The
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production term of the turbulent kinetic energy is given by G � 0:5Pkk: The model constant
Cpe has a value ranging from 1.1 to 2.0. The value of 1.6 was chosen for the present two-phase
¯ow, as suggested by Sato et al. (1996), to have the same turbulence attenuation as the
experiment. Table 1 lists all the model constants used in Eqs. (3)±(10).

3. Stochastic-trajectory modeling of the particulate phase

Discrete heavy particles are moving in turbulent carrier ¯ows based on the Lagrangian
trajectory equations. Each Lagrangian trajectory is representative of a `parcel' of particles
having the same velocity and initial conditions. Therefore, each individual particle trajectory
has its own representative number ¯ow rate. The total number of particle trajectories conserves
the mass ¯ow rate at the inlet. Since the density ratio of the gas to nickel particles is very
small, the main forces acting on a particle are the drag and gravity. All other forces, such as
the lift and Basset forces can be neglected. The ®nal particle trajectory equation can be written
as

d ~Upi

dt
�

~Ui ÿ ~Upi

tp

fp � gi �11�

where ~Ui denotes the instantaneous velocity of the carrier ¯uid following the motion of the
heavy particle, fp the drag correction coe�cient, and gi the gravitational force. Obviously, the
mean part of the instantaneous velocity can be obtained using an approach to interpolate the
Eulerian ¯uid property to the heavy particle position, whereas the ¯uctuating part is not
available with the time-averaged Eulerian equations. It is aimed at modeling this ¯uctuating
part that many Lagrangian stochastic models have been developed (Gosman and Ionnides,
1981; Berlemont et al., 1990; Zhou and Leschziner, 1991). However, the most popular and
frequently used particle-dispersion model should be the one of Gosman and Ioannides (1981).
Details on this model and its improvements will be given later after the two-way coupling
sources. Particle positions in the computational domain are updated each time step by

dxi

dt
� ~Upi �12�

which can be integrated after obtaining the particle velocity. In addition, the two-phase
coupling sources can be determined as follows.
Even though dilute two-phase ¯ows can neglect the e�ect of the particulate-phase

concentration on the Eulerian equations, it is still necessary to account for coupling e�ects of
momentum exchanges and turbulence modulation. This is because the particle density is often

Table 1
Reynolds-stress model constants

Cs Ce C1 C2 C 01 C 02 Ce1 Ce2 Cpe

0.22 0.18 1.8 0.6 0.5 0.3 1.45 1.9 1.6
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much larger than the continuous phase. The momentum exchanges between the continuous and
particulate phases can be determined as (Durst et al., 1984)
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where 8 is a Eulerian control volume, D ~Upi the velocity change of the particle residing in the
control volume 8 for a time interval Dt, _Nk the number ¯ow rate of the kth particle, and Dp

the particle diameter, the summation made over all particle trajectories across the control
volume 8. The exchanges in Reynolds stresses are taken into account by including (Kohnen
and Sommerfeld, 1997) in the Eulerian equations a source term as follows:
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p: Note that here h i denotes an ensemble average for all

the particle trajectories crossing the control volume. Consequently, the extra turbulence
dissipation in the e-equation can be determined.

4. Improved particle-eddy interaction model

Since its development, the particle-eddy interaction model of Gosman and Ioannides (1981),
referred to as the GI model, has been subjected to many improvements; see Shuen et al. (1985),
Chen and Pereira (1995), Graham and James (1996), Graham (1996a, 1996b), among others.
The original particle-eddy interaction model assumes that a particle moving in a turbulent
carrier ¯ow will encounter a series of energetic eddies. Each eddy is characterized by a
turbulent time scale and a turbulent length scale. The particle is interacting with a randomly
sampled eddy for a period of time, which is the minimum of an eddy lifetime and an eddy
transit time. The eddy transit time is aimed at accounting for the particle trajectory crossing
e�ect, which usually reduces particle dispersion.
Following Gosman and Ioannides (1981), the time and length scales for an energetic eddy

are determined as follows:
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where Cm is the model constant equal to 0.09. Since heavy particles may cross an eddy due to
the relative motion, this will reduce the particle dispersion. An eddy transit time scale is
introduced as a result. Neglecting the in¯uence of the gravity, we may obtain the eddy transit
time using the linearized particle momentum equation as follows:

tc � ÿt�p ln

"
1ÿ le

Vrelt�p

#
�16�

where Vrel is the relative velocity between the two phases and t�p is the particle relaxation time,
given by
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t�p �
tp

fp
�17�

with tp being the particle relaxation time. The particle-eddy interaction time for the GI model
is, therefore, determined by

tint �

8><>:Tf � te if Vrel <
le
t�p

min�te,tc� otherwise

�18�

where Tf denotes the ¯uid particle interaction time (FPIT), as called by Graham (1996a,
1996b). It is clear that the original GI model simply states that the eddy interaction time for
heavy particles cannot exceed the ¯uid particle interaction time, Tf . As a consequence, the
heavy particle dispersion can never exceed the ¯uid particle dispersion.

4.1. E�ect of turbulence anisotropy

One of the shortcomings for applying the original GI model to anisotropic turbulent two-
phase ¯ows is that it uses the local turbulent kinetic energy to determine the sampled eddy
velocity ¯uctuations. This is acceptable when the k±e model is used for simulating the
turbulent ¯uid ¯ow. This is due to the fact that no reliable information on turbulence
anisotropy has been obtained with the k±e model. The outcome of using the local turbulent
kinetic energy for sampling the eddy ¯uctuating velocities is that the particle dispersion will
also become isotropic, and that the turbulence anisotropy of the particulate phase will not be
adequately predicted (Chen and Pereira, 1995). It is, therefore, suggested (Chen and Pereira,
1995) that the local Reynolds stresses be used for sampling the eddy ¯uctuating velocities. The
eddy velocity ¯uctuation at the beginning of encounter is sampled by

ui �
�
u2i

�1=2
z �no summation over subscript i� �19�

where �u2i �1=2 is the normal stress of the gas ¯ow, and z is the random Gaussian variable having
zero mean and unity deviation. The Reynolds stresses in Eq. (19) can be obtained using any
numerical algorithm to interpolate the Eulerian solution to the heavy particle position.

4.2. E�ect of turbulence inhomogeneity

Even though the original GI model has been modi®ed to account for turbulence anisotropy,
it still has the drawback that it does not account for turbulence inhomogeneity for
inhomogeneous turbulent two-phase ¯ows. The original GI model assumes that the ¯uctuating
velocities sampled for an eddy are kept unchanged for the period of time during which the
particle is interacting with the sampled eddy. Evidently, this will result in an arti®cial transfer
of ¯uid turbulence from the region of high intensity to low intensity (MacInnes and Bracco,
1992). To overcome this de®ciency, it is, therefore, assumed that the particle is always
in¯uenced by the local turbulence. The normalized ¯uctuating velocities that are obtained at
the beginning of a particle-eddy encounter are multiplied by the local turbulence intensity,
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obtained with the second-moment closure model. In this way, the e�ect of ¯uid turbulence
inhomogeneity on particle dispersion can be accounted for.

4.3. E�ect of particle inertia

The recent theoretical studies of the GI model (Graham and James, 1996, Graham, 1996a,
1996b) have demonstrated that the original GI model has the de®ciency of underpredicting the
heavy particle dispersion in the longtime limit as compared to the tracer particles. This is due
to the constraint used within the conventional GI model that non-¯uid particles interact with a
given eddy for a time less than the eddy lifetime. However, experimental measurements indicate
that heavy particles may disperse faster than tracer particles in the longtime limit. Following
Graham (1996a), this de®ciency has been overcome by modifying the way to determine the
particle-eddy interaction time tint as follows:

tint �

8><>:Tf � 2te if Vrel <
2le
t�p

min�Tmax,tc� otherwise

�20�

where tc is given by Eq. (16), but le is doubled, as suggested by Graham (1996a, 1996b). The
eddy lifetime te is multiplied by a factor of 2 for the FPIT to ensure that the Lagrangian
integral time scales of the actual and model turbulence are consistent. Similarly, the
multiplying factor of 2 for the eddy length scale is aimed at ensuring that the longitudinal
scales of the actual and model turbulence are equal. The maximum interaction time Tmax is
independent of the ¯uid particle interaction time Tf . The introduction of Tmax makes it
possible for heavy particles to interact more time than the ¯uid particles with a sampled eddy.
In such a way, heavy particles can disperse more than ¯uid particles in the long-time limit.
Given a turbulence structure parameter, Tmax can be set to some value to achieve a desired
ratio of the Lagrangian to Eulerian time scales. Following Graham (1996a), it can be
determined, using his Fig. 2, for a turbulence structure parameter equal to 1, Tmax � 3:16te for
a ratio of the Lagrangian to Eulerian time scales equal to 1.4. Setting Tmax � Tf � te, we can
retrieve the original GI model.

5. Particle-wall impact model

When heavy particles rebound from the wall, some energy will be lost as a result of particle-
wall interaction. It is, therefore, necessary to model the particle-wall interaction. The particle-
wall interaction is a complex phenomenon. It may require accounting for the non-sphericity of
particle shape (Gavze and Shapiro, 1997), for example. Evidently, the profound investigation
of particle-wall interaction models is beyond the scope of the present work; therefore, a simple
particle-wall impact model (Jun and Tabako�, 1994) is applied here. This model uses the
particle-wall impact angle to determine the restitution coe�cients after rebounding from the
wall; see Fig. 1. The unit normal and tangential vectors are denoted by ~n and ~t, respectively.
Let ~Vn be the decomposition of the particle velocity vector, ~Vp, in the normal direction. The
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tangential component can thus be determined by

~Vt � ~Vp ÿ ~Vn �21�
The particle velocity after it rebounds from the wall can be determined by

~V
0
n � ÿen ~Vn, ~V

0
t � et ~Vt �22�

where et and en are two restitution coe�cients in the normal and tangential directions,
respectively. It follows that the particle velocity after interacting with the wall is given by

~V
0
p � et ~Vp ÿ �en � et� ~Vn �23�

from which each component of the particle velocity vector after rebounding from the wall can
be determined. In accordance with Jun and Tabako� (1994), the restitution coe�cients can be
determined in terms of the particle impact angle �b� as follows:

et � 1ÿ 2:12b� 3:0775b2 ÿ 1:1b3, en � 1ÿ 0:4159b� 0:4994b2 ÿ 0:292b3 �24�
where the impact angle is in radian, and is de®ned in Fig. 1. It was found that the impact
angles were very small for the present nickel particles.

6. Boundary conditions and description of the two-phase ¯ow

In the present work, one of the experimental cases of Sato et al. (1996) was considered. The
experimental case was concerned with heavy nickel particles, having a density of 8404 kg/m3, a
mean diameter of 50.3 mm and a standard diameter deviation of 6.68 mm, dispersing in a
turbulent gas ¯ow. This ¯ow case was selected for the present work because of the small
density ratio of the gas to heavy nickel particles, which makes it possible to neglect all other
forces but the drag and gravity. The heavy particles were injected from a near-wall jet having a

Fig. 1. De®nition of the particle impact angle.
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jet width of b � 5 mm. At the inlet, the ¯uid mean velocity was about 10 m/s, whereas the
nickel particles had a mean axial velocity of about 5.6 m/s. Away from the near-wall jet, the
uniform free-stream gas velocity was 2 m/s. Experimental measurements were available for
both the gas and particle phases starting from x=b � 1: Therefore, numerical computations also
started there. The ¯ow domain for numerical computations consisted of 500 � 100 mm along
the x- and y-directions, respectively. The gravitational acceleration was aligned with the x-
direction. The computational domain was covered with 120 � 91 non-orthogonal grids, which
gave an almost grid-independent solution for the ¯uid ¯ow. The solution to the Reynolds-stress
equations in curvilinear coordinates requires paying particular attention to implementing
boundary conditions. In addition, the technique of introducing the arti®cial viscosity (Lien and
Leschziner, 1996) is also necessary to enhance numerical stability. In the near-wall region, the
conventional wall-function method was applied to modify the momentum equations. As
discussed before (Chen and Pereira, 1998), such wall modi®cations for single-phase ¯ows can
still be used for a turbulent dilute two-phase ¯ow, where the particle volume concentration is
typically smaller than 0.05% (Rizk and Elghobashi, 1989). The boundary conditions for the
Reynolds stresses were based on the practice of using ®xed values for the wall-adjacent nodes
(Lien and Leschziner, 1994). At the exit, the zero-gradient conditions were set for all the
variables. The convergence criterion for the two-phase ¯ow computations was set equal to
0.5% for all the normalized residuals after including two-way coupling sources. The initial
distribution of particle sizes was selected by summing over the mean diameter a random part
that obeys a Gaussian distribution. Similarly, the particle instantaneous velocities were sampled
from the measured mean and root-mean-squared (RMS) values. To achieve a stochastically
invariant solution, a total of 20,000 particle trajectories were tracked for the modi®ed
Lagrangian stochastic model. Of particular note is that the tracking of particles in non-
orthogonal numerical grids requires an e�cient numerical algorithm (Chen, 1997) to locate the
Eulerian control volume to which the particle has moved after each Lagrangian time step. In
the present work, a new particle-locating approach (Chen and Pereira, 1999) was used that can
simultaneously locate the particle and distribute coupling sources over the particle trajectory-
crossed Eulerian control volumes.

7. Results and discussion

To clarify the e�ect of di�erent factors on numerical predictions, several numerical runs were
performed in the present study. The numbering of runs and parametric descriptions are listed
in Table 2.
Note that Runs 1±3 were aimed at clarifying the in¯uence of time and length scales, as well

as particle inertia on numerical results. Run 3 has accounted for the correct time and length
scales, as well as the e�ect of particle inertia, proposed by Graham (1996a). Therefore, this run
will be regarded as the standard one for comparison. Runs 4±6 were focused on understanding
the e�ect of the initial particle mean transverse velocity on numerical predictions, especially the
particle volume concentration. The e�ects of the particle-wall interaction on predictions were
studied in terms of Runs 7±9. The coupling e�ects on two-phase ¯ow predictions were
investigated in terms of Runs 3, 10 and 11. These runs can clarify how the complete two-way
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Table 2
Run labels and parametric descriptions

Run nos. FPIT Eddy length scale Inertia e�ects Restitution coe�cients Inlet velocity Two-phase couplings

1 Tf � te le Tmax � te et � 1:0, en � 1:0 ~Vp�Vexp�vexpz Momentum and turbulence
2 Tf � 2te 2le Tmax � 2te et � 1:0, en � 1:0 ~Vp�Vexp�vexpz Momentum and turbulence
3 Tf � 2te 2le Tmax � 3:16te et � 1:0, en � 1:0 ~Vp�Vexp�vexpz Momentum and turbulence
4 Tf � 2te 2le Tmax � 3:16te et � 1:0, en � 1:0 ~Vp�0:5Vexp�vexpz Momentum and turbulence

5 Tf � 2te 2le Tmax � 3:16te et � 1:0, en � 1:0 ~Vp�0:25Vexp�vexpz Momentum and turbulence
6 Tf � 2te 2le Tmax � 3:16te et � 1:0, en � 1:0 ~Vp � vexpz Momentum and turbulence
7 Tf � 2te 2le Tmax � 3:16te Jun and Tabako� (1994) ~Vp�Vexp�vexpz Momentum and turbulence

8 Tf � 2te 2le Tmax � 3:16te et � 0:9, en � 0:8 ~Vp�Vexp�vexpz Momentum and turbulence
9 Tf � 2te 2le Tmax � 3:16te et � 0:9, en � 0:6 ~Vp�Vexp�vexpz Momentum and turbulence
10 Tf � 2te 2le Tmax � 3:16te et � 1:0, en � 1:0 ~Vp�Vexp�vexpz Only momentum coupled

11 Tf � 2te 2le Tmax � 3:16te et � 1:0, en � 1:0 ~Vp�Vexp�vexpz No coupling sources
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coupling (momentum and turbulence modulation), the partial two-way coupling (only
momentum) and one-way coupling in¯uence two-phase ¯ow predictions. It should be noted
that, due to too many runs performed here, only the most representative results are presented
below.

7.1. Model evaluation with measurements and other numerical results

An accurate prediction of the single-phase ¯ow ®eld is a prerequisite for an accurate
prediction of coupled two-phase ¯ows. To evaluate the capability of the present two-phase ¯ow
model, therefore, the numerical results are ®rst necessarily evaluated for the single-phase gas
¯ow. To assess the present Reynolds-stress model, the numerical predictions are compared with
both the experimental measurements and the numerical results of Sato et al. (1996). In
addition, some available numerical results of Berlemont et al. (1997) are also compared here.
Fig. 2(a)±(c) show the predicted and measured pro®les of the gas axial mean velocity, the gas
axial and transverse RMS velocities, respectively, at station x � 200 mm. Fig. 2(a) shows that
slightly better near-wall predictions of the gas axial mean velocity are obtained with the low-
Reynolds number k±e model used by Sato et al. (1996). Such a near-wall improvement in the
predicted gas axial mean velocity is probably attributed to the modi®cation of some model
coe�cients in the low-Reynolds number k±e model to account for the e�ect of wall
approximation. The predictions of the present Reynolds-stress model lie between the low-
Reynolds number k±e model used by Sato et al. (1996) and the standard k±e model used by
Berlemont et al. (1997). Further away from the wall, the predictions with the Reynolds-stress
model are in better agreement with the measurements of Sato et al. (1996), showing the
superiority of the Reynolds-stress model to the two versions of the k±e models.
The gas ¯uctuating velocities, shown in Fig. 2(b) and (c), obtained with the three models

show that the Reynolds-stress model can capture the turbulence anisotropy, even though it
overpredicts the gas axial RMS velocity. On the contrary, the two versions of the k±e models
used by Sato et al. (1996) and Berlemont et al. (1997) both have the similar tendency to yield
the prediction of the gas isotropic turbulence, which is, however, against the experimental
measurements. Similar observations can also be found for the three gas velocities shown in Fig.
3 for station x � 250 mm. Therefore, it can be concluded that the Reynolds-stress model has
the advantage over the k±e models in that the gas turbulence anisotropy can adequately be
predicted. It has been found (Chen and Pereira, 1995) that the correct prediction of the ¯uid
turbulence anisotropy is a prerequisite for the correct prediction of the particle dispersion in
anisotropic turbulent carrier ¯ows.
Now, the present particle dispersion model is evaluated for the particle-laden turbulent gas

¯ow. The numerical results of Sato et al. (1996) and Berlemont et al. (1997) were based on the
time-correlated particle dispersion model (Berlemont et al., 1990). A total of 33,000 trajectories
were tracked in the Lagrangian computations of Sato et al. (1996). In addition, more than
20,000 particle trajectories were tracked for the numerical results of Berlemont et al. (1997).
The two-way coupling sources were accounted for in the same way as the present work. The
comparison of the present three numerical results (Runs 1±3) has demonstrated that, for the
two-phase ¯ow considered in this work, the particle ¯ow predictions are not very sensitive
either to the time and length scales or to the maximum interaction time Tmax. There are slight

X.-Q. Chen / International Journal of Multiphase Flow 26 (2000) 635±661646



Fig. 2. Pro®les of the single-phase ¯ow: (a) axial mean, (b) axial RMS and (c) transverse RMS velocities at x � 200

mm. Keys: solid, predictions (present); dash, predictions (Sato et al., 1996); dash dot, predictions (Berlemont et al.,
1997); symbols, data (Sato et al., 1996).
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Fig. 3. Pro®les of the single-phase ¯ow: (a) axial mean, (b) axial RMS and (c) transverse RMS velocities at x � 250
mm. Keys are the same as those in Fig. 2(a)±(c).
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discrepancies among the three numerical results. However, Run 3 can be regarded as a
standard one which has accounted for the correct time and length scales and particle inertia
(Graham, 1996a) in determining the particle-eddy interaction time. It is, therefore, considered
for the following model evaluation.
Fig. 4(a)±(c) show the pro®les of the particle and gas velocities at station x � 200 mm for

the axial mean, axial and transverse ¯uctuating (RMS) values, respectively. The present
numerical results (Run #3) are compared with both the numerical results and the experimental
measurements of Sato et al. (1996). Moreover, some available numerical results (axial mean
velocity) of Berlemont et al. (1997) are also shown in Fig. 4(a) for comparison. Unfortunately,
their predictions of gas and particle ¯uctuating (RMS) velocities are not available. For the gas
¯ow, Fig. 4(a) shows that the present Reynolds-stress transport model and the standard k±e
model of Berlemont et al. (1997) generally overpredict the gas axial mean velocity, whereas the
predictions of Sato et al. (1996) using the low-Reynolds number k±e model agree well with
their measurements. The most probable reason for the discrepancy should arise from the two-
way coupling sources, since the gas axial mean velocity has been well predicted with the
Reynolds-stress model; see Figs. 2(a) and 3(a). For the particle ¯ow, however, the present
model predictions are generally in better agreement with the experimental measurements than
the numerical results of Sato et al. (1996) and Berlemont et al. (1997). Even though the three
models overpredict the particle axial mean velocity as a whole, the present particle dispersion
model accounting for several additional physical phenomena still shows its superiority to the
other two time-correlated particle dispersion models. Of interest is that the predictions of the
gas axial mean velocity by Sato et al. (1996) agree satisfactorily with their experimental
measurements, but their model much overpredicts the particle axial mean velocity. In contrast,
the overprediction of the gas axial mean velocity by the present model is consistent with the
overprediction of the particle axial mean velocity. Comparing the predictions for the clean air
in Fig. 2(a) and for particle-laden air in Fig. 4(a), one can note that the particle-laden air mean
velocity is smaller than the clean air value. This is because the particles lag behind the gas
phase at the inlet. The two-phase momentum exchange leads to a loss of gas momentum,
which turns to accelerate the particle phase. As a result, the gas axial mean velocity for the
two-phase ¯ow becomes smaller than it is for the single-phase ¯ow.
The comparison of the particle ¯uctuating (RMS) velocities in Fig. 4(b) and (c) clearly

indicates the particle turbulent property, especially the particle axial ¯uctuating velocity, is
much better predicted with the present particle dispersion model that has taken into account
several additional physical phenomena. In contrast, the numerical results of Sato et al. (1996)
show much underprediction of the particle axial ¯uctuating velocity; see Fig. 4(b). Of
particular note is that many zigzag changes are present in the numerical results of Sato et al.
(1996), even though more particle trajectories (33,000) were tracked for their time-correlated
particle dispersion model. Fig. 4 shows that an adequate account of di�erent physical
phenomena, such as turbulence inhomogeneity, turbulence anisotropy and particle inertia, for
particle dispersion can reasonably well predict the particle turbulent property (the ¯uctuating
velocity). For the gas ¯ow, the axial ¯uctuating velocity is overpredicted with the Reynolds-
stress model, but is satisfactorily predicted by the low-Reynolds number k±e model of Sato et
al. (1996). As mentioned before, an opposite performance of the two models can be observed
for the gas transverse ¯uctuating velocity; a better prediction with the Reynolds-stress model.
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Fig. 4. Pro®les of the two-phase ¯ow: (a) axial mean velocity, (b) axial RMS and (c) transverse RMS velocities at
x � 200 mm. Keys for (a): bold solid, particle predictions (present); bold dash, particle predictions (Sato et al.,
1996); bold dash dot, predictions (Berlemont et al., 1997); bold circle, particle data (Sato et al., 1996); solid, particle-

laden air predictions (present); dash, particle-laden air predictions (Sato et al., 1996); dash dot, particle-laden air
predictions (Berlemont et al., 1997); circle, particle-laden air data (Sato et al., 1996). Keys for (b) and (c): bold solid,
particle predictions (present); bold dash, particle predictions (Sato et al., 1996); bold circle, particle data (Sato et al.,
1996); bold dash dot, particle-laden air predictions (present); solid, particle-laden air predictions (Sato et al., 1996);

circle, particle-laden air data (Sato et al., 1996); dash dot, clean air predictions (present); diamond, clean air data
(Sato et al., 1996).



However, the advantage of using the Reynolds-stress model is its ability to predict the
anisotropy of gas turbulence. This can be clearly noted when comparing the gas axial
¯uctuating velocity with its transverse ¯uctuating velocity, as shown in Fig. 4(b) and (c). It is
evident that the Reynolds-stress transport model has captured the turbulence anisotropy,
yielding better predictions of the gas transverse ¯uctuating velocity. On the contrary, the low-
Reynolds number k±e model has much overpredicted the transverse ¯uctuating velocity,
showing its incapability of capturing the turbulence anisotropy. The two components of the
gas ¯uctuating velocity are almost isotropically predicted with the k±e model, even though
experiment indicates that the turbulence is still anisotropic. The same behavior can be observed
for the three model results in Fig. 5 for station x � 250 mm. Figs. 4 and 5 have shown that the
particle transverse ¯uctuating velocities are much underpredicted either by the present particle
dispersion model or by the time-correlated dispersion model (Berlemont et al., 1990) as
compared to the experimental measurements. As explained by Sato et al. (1996), the most
probable reason for this large discrepancy between the predictions and measurements may arise
from the high charge built up on the wall, which can signi®cantly in¯uence the motion of
heavy nickel particles. However, the e�ect of wall charge on particle dispersion has not been
accounted for in all numerical predictions. Even so, the present numerical results are still
slightly superior to those of Sato et al. (1996).
The particle mean and ¯uctuating velocities are obtained using the ensemble averaging

procedure for all the particle trajectories that cross the Eulerian control volume in question.
However, the particle volume concentration is obtained using the total number of particle
trajectories that cross the Eulerian control volume. Evidently, the volume concentration is a
measure for the spatial distribution of physical particles in the computational domain. Fig. 6
show, respectively, the pro®les of the particle volume concentration at station x � 200 and 250
mm. Once again, the present numerical predictions are compared with those of Sato et al.
(1996) and Berlemont et al. (1997). Evidently, the present numerical predictions agree more
satisfactorily with the measurements than either those of Sato et al. (1996) or those of
Berlemont et al. (1997) for the region away from y � 20 mm. However, underprediction has
been observed in the region close to the wall. This is the case for all the three model
predictions. Experimental measurements indicate that more particles are distributed in the
near-wall region, forming a high concentration pro®le there. Qualitatively, the present
predictions and those of Berlemont et al. (1997) show the same tendency as the experiment,
whereas the numerical predictions of Sato et al. (1996) clearly fail to correctly predict the
distribution of physical particles, showing a high particle concentration around y � 12 mm. It
is particularly noted that there appears a lot of computational noise in the concentration
pro®les of Sato et al. (1996), although more particles were tracked in their computations.
Similarly, some zigzag changes are also present in the results of Berlemont et al. (1997), even
though these zigzag changes are much milder than those of Sato et al. (1996). Among the three
models, the smoothest and best predictions are obtained with the present particle dispersion
model. The present smooth pro®les are likely to bene®t from the numerical algorithm used in
the present work for distributing particle sources and assigning the particle property (Chen and
Pereira, 1999) to the particle-crossed Eulerian control volumes in terms of the time-residence
interpolation.
Several factors may be responsible for the high particle volume concentration in the near-
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Fig. 5. Pro®les of the two-phase ¯ow: (a) axial mean, (b) axial RMS and (c) transverse RMS velocities at x � 250
mm. Keys for (a) are the same as those for Fig. 4(a) and keys for (b) and (c) are the same as those for Fig. 4(b) and

(c).
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wall region. It can be inferred that the high near-wall concentration may arise either from the
particle migrating (transverse) velocity or from the particle-wall interactions (restitution
coe�cients), both of which should have a direct impact on the distribution of the predicted
particle volume concentration. To clarify the e�ect of the migrating velocity on the particle
volume concentration, numerical studies were carried out using di�erent particle mean
transverse velocities at the inlet; see the description for Runs 4±6 in Table 2.

7.2. E�ect of initial conditions

The e�ect of the initial particle mean velocity on two-phase ¯ow predictions was studied by
changing the particle mean velocity at the inlet, corresponding to half and one-fourth of the
experimental values (Runs 4±5) and zero (Run 6). Note that the particle ¯uctuating velocity
was kept the same for all the three runs, as described in Table 2. Fig. 7(a)±(c) show,
respectively, the pro®les of the particle volume concentration, particle axial mean velocity, and

Fig. 6. Pro®les of the particle volume concentration: (a) x � 200 mm and (b) x � 250 mm. Keys are the same as

those in Figs. 2 and 3(a) and (b).
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Fig. 7. E�ect of initial conditions on predictions: (a) particle concentration, (b) particle axial mean and (c) axial
RMS velocities at x � 200 mm. Keys: solid, Run 3; dash, Run 4; dash dot, Run 5; dash dot and dot, Run 6; circle,
data (Sato et al., 1996).
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particle axial ¯uctuating (RMS) velocity for the three runs at x � 200 mm. Note that Run 3 is
also shown here for reference. As expected, the reduced particle mean velocity at the inlet
results in reduced particle dispersion, thus increasing the particle volume concentration close to
the wall; see Fig. 7(a). However, the improved agreement of the concentration with the
experiment in the region close to the wall is at the expenses of reducing the particle dispersion.
As a result, the concentration is underpredicted for the region away from the wall. Fig. 7(b)
shows that the particle axial mean velocity is slightly sensitive to the change in the particle
transverse mean velocity at the inlet. The reduced particle dispersion as a result of using the
smaller transverse mean velocity at the inlet can also be observed in Fig. 7(c). The relatively
larger discrepancy among the three runs occurs in the region farther away from the wall �y >
20 mm), where the particle concentration is particularly sensitive to the particle mean velocity
at the inlet. It should be noted that the zigzag changes in the region far away from the wall are
due to the small number of particles present there, which increases the statistical uncertainty
there. Similar observations have also been found for the pro®les of the particle transverse
¯uctuating velocity; they are, therefore, not shown here. Of interest is that the near-wall gas
¯uctuating velocities are insensitive to the change in the initial particle mean velocity, showing
almost no di�erence among the three runs.

7.3. E�ect of coupling sources

So far, all the numerical predictions have accounted for both the two-phase momentum
exchanges and the turbulence modulation of the gas phase by the dispersed particle phase; that
is, the complete two-way coupling e�ect has been accounted for in two-phase ¯ow predictions.
To separate the in¯uence of the momentum exchanges from that of turbulence modulation,
Runs 10 and 11 were carried out that accounted for only momentum exchanges (the partial
coupling) and no coupling, respectively. The corresponding results, together with those of Run
3, are compared with each other and with those of Sato et al. (1996) in Fig. 8(a)±(c) for the
two-phase axial mean, axial ¯uctuating velocity, and transverse ¯uctuating velocity,
respectively. The almost identical results between Run 3 and 10 show that the particle-phase
predictions are mainly in¯uenced by the momentum exchanges. Therefore, the turbulence
modulation can be neglected, as far as the particle ¯ow predictions are concerned. To our
surprise, this is not the case for the ¯uid gas ¯ow; see Fig. 8(a)±(c) for the gas ¯ow predictions.
Compared with the clean air predictions (Run 11), the particle-laden air predictions show that
the ¯uid turbulence in the presence of nickel particles is generally attenuated as a result of the
turbulence modulation. Fig. 8(b) and (c) show that the numerical predictions qualitatively
agree with the measurements, i.e., to attenuate the ¯uid turbulence as compared to the clean
¯ow. Such a turbulence-modulation phenomenon also agrees with the theoretic analysis (Gore
and Crowe, 1989) that small particles attenuate the ¯uid turbulence. For the present two-phase
¯ow, it was found that the maximum relative Reynolds number (Rep) was less than 400.
Therefore, the turbulence attenuation by the added particles also agrees with the theoretic
analysis of Hetsroni (1989), who discriminated the turbulence attenuation and augmentation
based upon the demarcating Reynolds number, Rep � 400:
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Fig. 8. E�ect of coupling sources on predictions: (a) particle axial mean, (b) particle axial and (c) transverse RMS
velocities at x � 200 mm. Keys: bold solid, particle predictions (Run 3); bold dash, particle predictions (Run 10);

bold dash dot, particle predictions (Run 11); circle, particle data (Sato et al., 1996); solid, particle-laden air
predictions (Run 3); dash, particle-laden air predictions (Run 10); dash dot, clean air predictions (Run 11);
diamond, particle-laden air data (Sato et al., 1996).
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7.4. E�ect of restitution coe�cients

As inferred before, the high near-wall particle volume concentration in the experiment may
also arise from the particle-wall interaction. This is because particle-wall interaction causes the
particle energy loss and reduces the particle migrating (transverse) velocity. To clarify how
particle-wall interaction in¯uences the two-phase ¯ow predictions, the numerical predictions for
Runs 3, and 7±9 are compared. These runs are di�erent from each another in the restitution
coe�cients used to account for particle-wall interaction. For the two-phase ¯ow considered
here, it was found that the impact angles were very small owing to the prevalent axial mean
velocity. As a result, the restitution coe�cients (Jun and Tabako�, 1994) are approximate to
unity. The comparison of the results for these runs has shown that no discernible discrepancies
are observed among the results. Therefore, they are not plotted here anymore. It can, thus, be
concluded that the particle-wall interaction is not the factor responsible for the high particle
volume concentration close to the wall.

7.5. Evaluation of model accuracy

So far all the numerical predictions have been compared with the experimental
measurements using the transverse pro®les. To have an idea of how these models are
quantitatively compared with the measurements, numerical errors are estimated for the three
model predictions for an arbitrary position in x � 200 mm and y � 15 mm, as suggested by
one referee. Table 3 lists the detailed error estimations for the single-phase ¯ow predictions. As
shown in Figs. 3 and 4, the predictions of Sato et al. (1996) yield the best agreement with the
measurements for the gas axial mean velocity. It is found, however, that the Reynolds-stress
model best predicts the gas ¯uctuating velocities. Note that, under the assumption of correct
experimental measurements, the positive errors represent an overprediction, and that the
negative errors represent an underprediction.
Table 4 gives a detailed list of estimated errors for all numerical runs and those for Sato et

al. (1996) and Berlemont et al. (1997). Generally speaking, there are large discrepancies
between predictions and measurements for the chosen position. It should be noted that these
estimated errors are solely based on an arbitrary single point. They cannot, therefore, represent
the general trend of the numerical predictions. For example, the particle volume concentration,
predicted by Sato et al. (1996), agrees by chance well with the measurements at the chosen
point. However, the general trend of the particle volume concentration, shown in Fig. 6(a) and
(b), clearly demonstrates that the overall predictions of Sato et al. (1996) are very di�erent

Table 3
Error (%) estimation at (x, y ) = (200 mm, 15 mm) for the single-phase ¯ow

Variable Present model Sato et al. (1996) Berlemont et al. (1997)

U ÿ4.4 ÿ0.4 11.2
u 21.2 ÿ6.4 7.1

v 0 35.1 23.1
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Table 4

Error (%) estimation at (x, y ) = (200 mm, 15 mm) for the two-phase ¯ow

Flow variable Present model Sato et al. (1996) Berlemont et al. (1997)

1 2 3 4 5 6 7 8 9 10 11

U 25.6 25.8 26.1 21.8 19.8 18.2 25.2 24.7 24.7 26.9 13.4 ÿ4.6 32.8

u 16.7 18.3 19.3 27.4 31.1 33.7 18.2 18.4 18.4 28.2 51.1 ÿ18.5 Unavailable
v 13.5 14.9 15.6 22.4 25.8 27.9 14.5 14.8 14.8 31.6 50.2 48.2 Unavailable
Up 26.6 26.7 27.7 27.9 27.7 28.8 26.1 25.9 25.9 28.4 23.8 34.5 23.1

up 2.4 4.3 2.6 4.2 5.6 5.4 0.6 1.4 1.2 3.9 10.4 ÿ33.2 Unavailable
vp ÿ62.2 ÿ57.9 ÿ57.7 ÿ56.2 ÿ52.1 ÿ51.1 ÿ58.9 ÿ59.1 ÿ59.2 ÿ55.2 ÿ51.1 ÿ65.2 Unavailable
Cp ÿ17.8 ÿ19.2 ÿ20.2 ÿ29.5 ÿ30.5 ÿ33.0 ÿ17.5 ÿ21.5 ÿ21.6 ÿ21.7 ÿ20.7 1.1 ÿ22.6
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from their experimental measurements. Table 4 shows that the particle mean and ¯uctuating
velocities are better predicted with the present particle dispersion model than either Sato et al.
(1996) or Berlemont et al. (1997). Taking into account the fact that the glass particles for the
same ¯ow con®guration have been well predicted with the present numerical model (Chen and
Pereira, 1998), the large discrepancies are very likely from the buildup of wall charge in the
experimental measurements.

8. Concluding remarks

Detailed numerical studies have been carried out for heavy nickel particles dispersing in a
turbulent gas ¯ow. Various aspects in¯uencing two-phase ¯ow predictions were addressed. The
second-moment Reynolds-stress transport model in curvilinear coordinates was applied to
predict the carrier ¯ow ®eld. The improved particle dispersion model has taken into account
the additional e�ect that the heavy particle has the possibility to disperse faster than the ¯uid
particles (Graham, 1996a, 1996b). Numerical results were compared with experimental
measurements and other model predictions. The present study has come to the following
conclusions.

1. The anisotropy of the ¯uid turbulence is satisfactorily predicted with the Reynolds-stress
model. In contrast, the two versions of the k±e model yield almost isotropic predictions of
turbulence.

2. The transverse particle velocity at the inlet has a great impact on the particle volume
concentration. The change in the particle mean transverse velocity at the inlet can
substantially improve the predictions of the near-wall particle concentration. Even though
the reduced particle mean transverse velocity at the inlet does bring the predicted near-wall
concentration to more agreement with experimental measurements, however, this was
achieved at the expenses of arti®cially reducing the transverse particle dispersion. As a
result, general underprediction is observed for particle volume concentrations far away from
the wall jet.

3. It was found that the maximum interaction time (Tmax) is only important to the ®nite-inertia
(glass) particles where the eddy interaction time is dependent on this time scale (Chen and
Pereira, 1998). Otherwise, Tmax has a negligible e�ect on particle ¯ow predictions because
the eddy interaction time is mainly dependent on the eddy transit time. This is the case for
the present turbulent gas ¯ow laden with nickel particles.

4. The change in restitution coe�cients has a negligible in¯uence on the particle volume
concentration. The fully elastic rebounding conditions may be used to account for particle-
wall interaction for simpli®cation.

5. The turbulence modulation has a little impact on the turbulence of the nickel particles, but
has a non-negligible e�ect on the turbulence of the ¯uid ¯ow, even though the particle
volume concentration is very low. As far as the particle ¯ow predictions are concerned, the
two-way coupling e�ect between the gas and particles is mainly due to the momentum
exchanges. Owing to the large particle relaxation time, no discernible discrepancy has been
observed in numerical predictions with and without turbulence modulation for the particle
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volume concentration, particle mean and ¯uctuating velocities. Of particular note is that the
complete two-way coupling sources (both momentum exchanges and turbulence modulation)
have to be accounted for, as far as ¯uid ¯ow (turbulence) predictions are concerned.

6. Compared with other particle ¯ow predictions of Sato et al. (1996), and Berlemont et al.
(1997), present numerical results for the particle ¯ow agree more satisfactorily with
experimental measurements.
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